
Aither AVM: World Computer for AI Agents Swarm
The Agent Virtual Machine for Execution, Swarm, and Tokenization in the Modern AI Ecosystem.

Aither Team
aither.xyz

December 25, 2024

Abstract
Aither AVM provides a unifying “world computer”–style environment where AI agents can

securely execute logic and arbitrary programs, manage resources, collaborate in swarms, and
leverage built-in payment incentives. By introducing a universal instruction layer—similar
to Ethereum’s EVM—Aither AVM resolves fragmentation in modern AI, allowing advanced
models to grow beyond isolated libraries and achieve seamless, interoperable intelligence at
scale.

1 Introduction

Figure 1: AVM Design

Modern AI Agents, Swarms, and AGI system lack the universal secure execution environment
providing the abstract runtime. While numerous systems handle agent building, messaging, or
orchestration, none define a true low-level standard for secure, interoperable execution.

Similar to Ethereum’s EVM, Aither AVM uses a Virtual Machine layer with a universal in-
struction set—standardizing logic, agent communication, resource/wallet management, and more.
This approach ensures advanced intelligence can move beyond isolated models and transform into
economically aligned, auditable, and interoperable ecosystems.
We declare that agent frameworks should focus on high-level features, while sharing
a common IR (intermediate representation) layer under the hood.

1

Figure 2: Swarm Collaboration

2 A Glimpse of AI in 2030
By 2030, AI hovers on the threshold of AGI—no longer confined to simple chatbots or single-
purpose models. Instead, swarms of autonomous agents coordinate everything from finan-
cial markets to industrial logistics to personalized healthcare, each virtualizing compute resources
(GPU, HPC) at a moment’s notice. These agents don’t just run static code: they evolve strate-
gies, spawn specialized sub-agents, and automatically reallocate limited resources whenever
critical demands arise. Real-time image recognition, advanced language tasks, cryptographic ver-
ifications, and more flow seamlessly across private nodes and global clouds, creating a vibrant,
always-adapting network that pushes us closer to genuine general intelligence.
Amid this complexity, agents negotiate microfees for data or compute—preventing resource
hoarding and rewarding helpful contributions. They rewrite sections of their code while running,
plugging in new models or patching flaws identified on the fly. Yet the possibility of runaway
processes or unauthorized code mutations raises pressing safety concerns. Each agent needs secure
oversight, guaranteed sandboxing, and a built-in mechanism to ensure it never exceeds its
virtualized resource budget—no matter how advanced it becomes.
Aither AVM answers these challenges at the virtual machine level—offering resource virtu-
alization, security sandboxes, and embedded economic logic in a single, unified execution layer.
By defining agent logic, payments, and safe self-modifications directly in the VM, Aither AVM
becomes the digital backbone of 2030’s AI landscape—ensuring stable, traceable, and equitable
agent interactions. This secure, low-level approach not only supports evolving AI capabilities but
also paves the way for AGI systems that expand their own potential without jeopardizing the
broader ecosystem.

2

3 Challenges & Motivation
3.1 Fragmented AI Frameworks
While powerful libraries (e.g., ai16z, Eliza, LangChain) can orchestrate multi-agent systems, inte-
grate social media, or provide wallet functionality, each solution typically reinvents core features
(such as logic orchestration, concurrency, or resource management) in slightly different ways.
There is no single “low-level” standard defining how these tasks should be done across frameworks,
leading to:

• Duplicated Efforts: Each framework implements its own approach to agent memory, con-
currency, and plugin interfaces.

• Interoperability Gaps: Agents built in one system rarely integrate seamlessly with others,
hindering large-scale collaboration.

• Security & Sandboxing Limitations: Most library-centric approaches rely on container-
ization or ad-hoc checks, lacking a deeper VM-level mechanism to isolate malicious or run-
away agents.

3.2 Limited Economic & Incentive Layers
Some agent-oriented libraries offer wallet plugins or optional payment features. However, these
tend to be built-ins, not woven into the execution environment:

• Inconsistent Payment Handling: Micropayment logic often relies on external APIs or
custom code, complicating “pay as you go” or agent-to-agent service fees.

• Weak Incentive Alignment: Without a built-in mechanism that natively tracks resource
usage and cost, multi-agent ecosystems must rely on manual or ad-hoc reward systems.

3.3 Gaps in Cross-Platform & Advanced Compute Integration
Modern AI workflows span a diverse range of infrastructures:

• Cross-Platform Execution: Agents may need to run on personal laptops, AWS clusters,
or decentralized HPC providers (e.g., Bittensor TAO). Existing frameworks typically address
only one or two of these environments seamlessly.

• Multi-Provider Model Access: Incorporating GPU compute, Hugging Face models, or
custom ML pipelines often requires library-specific plugins or manual integration. (Agent
logic is independent from the model and infrastructure logic.)

• Advanced Tech (ZK, FHE): Techniques like zero-knowledge proofs or fully homomorphic
encryption remain out of scope for most frameworks, requiring specialized code that rarely
“just works” across different platforms.

In short, there is no single low-level environment unifying all these infrastructures and advanced
compute features into a secure, pluggable layer.

3

3.4 The Need for a Universal Execution Layer
Modern AI demands a more foundational platform than what library-based solutions can provide:

• Cross-Infrastructure Support: The ability for agents to seamlessly migrate and run on
laptops, cloud providers, or decentralized HPC networks (like Bittensor TAO), all under the
same environment.

• Standardized Instructions & Sandbox: A low-level IR “opcode” layer shared by all
agents, ensuring consistent metering, safe code execution, and isolation.

• Holistic Resource Management: Hard limits on GPU and token usage enforced by a
virtual machine, rather than relying on language-level patches.

• Intrinsic Economic Model: A deeply integrated payment or “gas-like” system allowing
agents to collaborate, sell services, or pay for tasks natively.

• Native Plugin Architecture: Directly built into the VM, simplifying integration of ad-
vanced GPU frameworks, Hugging Face endpoints, or cryptographic modules for all agents.

3.5 Absence of Safe Self-Learning & Introspection
Even advanced AI libraries seldom let agents modify their own code during runtime—yet this kind
of self-modification is vital for advanced AI or AGI-like systems that must adapt to unpredictable
scenarios:

• No Controlled Self-Editing: Most frameworks allow only partial updates (like retraining
weights or changing hyperparameters). Actively rewriting the agent’s logic on the fly is
usually out of scope, and attempts via dynamic scripting (eval, etc.) are ad-hoc, insecure,
and untraceable.

• Limited Self-Debugging & Self-Observation: Agents generally lack built-in methods to
examine internal logs or chain-of-thoughts mid-run, making it impossible to apply real-time
“debug fixes.” This dependence on external developers hinders true autonomous improve-
ment.

• Execution-Level Adaptation for AGI: Approaching general intelligence demands dy-
namic changes at the execution level—integrating new subroutines, reorganizing logic, or
optimizing decisions in the moment. Without a permissioned IR-based self-modification
model, advanced self-learning becomes risky or outright impossible.

Only a virtual machine—where code rewriting, resource governance, and security checks operate
beneath the library layer—can provide safe, auditable, and authorized self-editing needed for
AGI-like meta-learning. By designating editable code regions, enforcing strict resource budgets
for rewriting, and logging each change, the VM enables self-improvement without sacrificing
stability. This surpasses typical framework limitations and is a key motivation behind Aither
AVM.

4

3.6 “Matreshka” Genetic Swarm Approach
Current frameworks also lack the means to genetically combine two existing agents’ logic—treating
each agent’s code as “Agentic DNA.” For instance, one might merge “Masha-Agent” with “PIMP-
Agent” to spawn “Misha-Agent,” inheriting features from both.

• Library-Based Limitations:

– Agent logic is often containerized or language-bound, making it impractical to do run-
time “crossover” or “recombination.”

– Even if attempted, ad-hoc scripting or manual merges would be insecure and untrace-
able.

• Why It Matters:

– Agentic DNA: By compiling agent logic to a uniform IR, we can recombine IR seg-
ments much like genetic crossover in evolutionary algorithms.

– Adaptive Offspring: New agents might inherit HPC subroutines or swarm commu-
nication code from each parent.

– Evolutionary Multi-Agent Systems: This paves the way for “Matreshka”-style
genetic swarms, where advanced AI organisms evolve under a single, metered VM.

4 Simpliest Example: RAG AI Bot
Below is a simplified IR-style script demonstrating how an AI bot might perform basic RAG
(Retrieval-Augmented Generation) steps under the Aither AVM. Even with just a few instructions,
it showcases how IR primitives can replace complex frameworks.

Example IR Script

:retrievalPhase
1. CALC_EMBED R_state.conversation[-1].text, "text-embedding-3-small", out=Q_embed
2. DOC_SEARCH "KnowledgeDocs", Q_embed, 3, MMR=true -> R_docs

:finalGenPhase
3. GPU_INFER "LLama", R_state.conversation[-1].text + R_docs, out=Rfinal
4. APPEND_MESSAGE R_state.conversation, "assistant", Rfinal

Script Explanation:

• retrievalPhase:

– CALC_EMBED transforms the last user message into a vector Q_embed.
– DOC_SEARCH fetches the top three relevant docs (R_docs) from "KnowledgeDocs", ap-

plying MMR for more diverse results.

• finalGenPhase:

5

– GPU_INFER feeds the user’s last message plus retrieved docs into a LLaMa GPU model,
storing output in Rfinal.

– APPEND_MESSAGE updates the conversation with the agent’s new answer.

4.1 Why IR Instructions Are Powerful

Execution Primitives Each IR line (e.g., CALC_EMBED, DOC_SEARCH, GPU_INFER) is a primitive
the AVM understands directly. All higher-level RAG logic is composed from these opcodes, rather
than juggling multiple partial frameworks.

Traceability & Gas Metering Every instruction is explicit and metered (for HPC/GPU usage,
doc lookups, etc.). The AVM logs each IR step for auditing, halting if HPC or GPU budgets are
exceeded—essential in swarm environments (e.g., hundreds or thousands of agents).

Security via Sandbox Instead of running a .exe or Python script with broad system privileges,
the AVM executes each IR instruction in a safe environment disallowing direct OS calls. This is
more fine-grained than Docker/VirtualBox, which isolate an entire OS but provide no instruction-
level resource control.

Infrastructure Flexibility IR instructions abstract the compute layer, so:

• Laptop GPU for local tests

• AWS for heavy HPC tasks

• Bittensor for decentralized HPC

No code changes are required; the AVM automatically routes HPC/GPU calls.

Self-Rewriting IR IR instructions are simpler than entire Python scripts, making it easier for
an AI or developer to refine or fix specific steps without broad security hazards.

Simplicity for RAG Python and JS are general-purpose languages. The IR approach is:

• Lean: Each instruction has a definite cost and effect.

• Extensible: New IR opcodes (e.g., HPC offloads) can be added without rewriting code in
multiple frameworks.

4.2 IR-Level AVM vs. Docker/VirtualBox

1. Entire OS vs. Instruction-Level
Docker/VirtualBox isolate a whole OS—secure but offering no built-in instruction-level re-
source checks or rewriting. The AVM applies gas at the opcode level (HPC calls, GPU usage,
rewriting).

6

2. Overhead
Containers/VMs spin up entire OSes—overkill for ephemeral HPC tasks in large swarms.
The AVM is simply an execution layer, more lightweight.

3. Resource Metering & Payment
Containers can limit CPU/memory but do not handle gas-based HPC calls or micropayments
per step. The AVM natively integrates HPC quotas and micropayments, rejecting a single
step that exceeds budget (no container kill needed).

4. Self-Rewriting & Trace
Docker/VirtualBox do not let you revise your AI logic instruction by instruction. The AVM
supports partial rewrites under dev policy, logging each IR diff.

5. Security vs. AI Specifics
Containers secure the OS environment but not HPC concurrency, rewriting, or micropay-
ments. The AVM targets HPC usage, GPU ops, IR rewriting, and pay-as-you-go logic—ideal
for agent-based or RAG AI.

Conclusion: In just a few IR instructions, we achieve an end-to-end RAG pipeline under Aither
AVM. This IR-level model is lightweight, flexible, and purpose-built for advanced AI tasks—often
more efficient than container solutions or complex frameworks, especially in large swarm environ-
ments.

5 Aither AVM: High-Level Overview
Aither AVM aspires to be a “world computer” for AI—an execution layer where autonomous
agents of any kind (from simple chatbots to AGI-level multi-agent swarms) can run securely,
portably, and interoperate with ease. Although many frameworks address specific AI tasks, none
provide the foundational, low-level, universal environment required for large-scale agent col-
laboration, resource governance, self-learning, and economic exchange.

Why “Self-Learning”?
Rather than confine agents to static routines (as in most AI libraries), Aither AVM lets
agents observe their own code, logs, and performance, then safely mutate or upgrade
logic at the IR level, subject to developer-defined policies. This transforms AI from
rigid scripts into truly evolving, adaptive systems—laying the groundwork for next-
generation intelligence.

Our Journey:
We initially considered yet another AI framework, but realized the real barrier was
the lack of a universal, VM-level approach to handle execution, security, resource
governance, inter-framework interoperability, and payment natively. By targeting the
VM layer instead, Aither AVM solves core fragmentation problems that library-level
solutions cannot.

5.1 Core Design Goals
1. Universal Execution & Interoperability

7

• Aither AVM defines a common instruction set (intermediate representation, IR) for AI
agents.

• Regardless of whether an agent was written in Python, JavaScript, or elsewhere, once
compiled to Aither IR, it runs identically under the AVM.

• This becomes “one ring to rule them all” for AI execution, drastically reducing frag-
mentation and fostering cross-framework collaboration.

2. Secure Sandboxing & Resource Governance

• Each agent is isolated to prevent malicious or runaway code from harming other agents
or the host.

• The AVM layer enforces gas-like quotas (GPU, memory, token usage) so that no single
agent can monopolize resources or cause denial-of-service.

• Security is built in at the opcode (IR instruction) level: if an agent exceeds budget or
performs forbidden calls, the AVM halts execution immediately.

Why Not Just Docker or Containers?
Docker offers OS-level isolation but doesn’t track instruction-level resources or
embed payment logic. By metering each instruction (HPC calls, GPU usage,
plugin invocations) and halting if budgets are exceeded, Aither AVM provides far
deeper control—essentially acting as a full VM ensuring security, concurrency, and
economic constraints.

Running Python Code
Python (or JS, etc.) is compiled into IR via specialized translators. Once in IR
form, agents gain all AVM benefits—sandboxing, resource metering, embedded
payments—without major rewrites of original code.

3. Built-In Incentives & Payment Capabilities

• Inspired by blockchain VMs like Ethereum, Aither AVM embeds a payment mechanism
within execution.

• Agents can maintain wallets for buying/selling services, paying peers for data, or renting
compute time—no external finance layer needed.

• This alignment fosters large-scale agent economies and collaborative behavior.

4. Cross-Infrastructure Portability

• Agents compiled to Aither IR can run anywhere: local machines, major clouds (AWS,
GCP), or decentralized HPC networks (e.g., Bittensor TAO).

• The AVM adapts to each environment’s GPU/memory constraints while preserving
identical agent logic and consistent resource rules.

5. Native Multi-Agent & Swarm Support

• Managing large swarms is core to AVM design. Agents can spawn, message, or coordi-
nate at the VM level, eliminating ad-hoc scripts or microservices.

8

• The AVM handles concurrency, load balancing, and agent-to-agent communication,
simplifying complex multi-agent workflows.

Swarm Protocol
The AVM can interface with standard transports (Slack, Telegram, P2P) while
still applying gas and security checks to agent messages.

6. Plugin Ecosystem & Extensibility

• A modular plugin system allows developers to add specialized capabilities (advanced
ML, cryptographic tools, external APIs) directly at the AVM layer.

• Because plugins are recognized by the VM, any agent can invoke them—no extra bridg-
ing required.

7. Self-Learning & Introspective Self-Debug

• The AVM allows agents to observe or rewrite IR code mid-execution, subject to devel-
oper permission.

• This “separate-observer” approach lets agents pause, inspect logs and IR instructions,
or insert new routines if policy allows.

Why This Matters:
• Advanced Metaprogramming: Agents can refine prompts, swap subrou-

tines, or fix bugs in real time—akin to dynamic self-debugging.
• Permissioned Self-Modification: Developers define which code is editable,

blocking malicious or runaway rewrites.
• Core Logic Safeguard: Agents cannot “kill themselves” by overwriting crit-

ical IR logic; unauthorized changes are denied.
• Deeper Autonomy: Traditional AI libraries might allow model fine-tuning

but rarely let an agent rewrite its execution logic safely. AVM introspection
and resource checks make secure on-the-fly changes possible.

• Why IR?: Directly rewriting Python/JS mid-run is risky. A structured IR
is auditable, metered, and guided by developer policies.

5.2 Positioning & Architecture
Conceptually, Aither AVM sits as a thin but powerful layer between:

• High-Level AI Frameworks: (ai16z, Eliza, LangChain, chatbots)

• Underlying Infrastructures: (laptop OS, cloud providers, decentralized HPC)

1. Agents typically begin as code in a given AI framework or custom environment.

2. Compilation or translation turns that code into Aither IR, which the AVM executes.

3. The AVM applies security measures, resource quotas, messaging, and payment mechanisms.

4. Infrastructure (laptop, AWS, Bittensor) is just a “backend” with specific capacities. From
the AVM’s perspective, it’s all the same.

9

5.3 Aither AVM vs. Traditional AI Libraries
Foundational vs. Framework-Level
Most AI libraries focus on top-level features (prompt engineering, orchestration) but rely on OS
or containers for security and concurrency. By contrast, Aither AVM embeds these directly into
the execution layer, functioning like a specialized operating system or “world computer” for AI.
Enforced Resource Quotas
Conventional libraries might advise rate limits but cannot fully stop an agent exceeding CPU/GPU
usage. Aither AVM’s “gas-like” system ensures every IR instruction follows a strict resource budget.
Economic Model
Libraries offering micropayment or wallet plugins typically integrate with external APIs. Aither
AVM natively embeds token balances and micropayment logic within its execution framework,
letting agents transact without external bridges.

5.4 Matreshka Genetic Algorithm

Figure 3: Parent Trading Agents

Beyond self-modification, Matreshka extends agent evolution by genetically combining multiple
agents:

1. Agentic DNA Representation
Each agent’s logic compiles into Aither IR, serving as its “genetic” material.

10

Figure 4: Child Trading Agents

2. Parent Selection
A swarm or orchestrator picks two (or more) parent agents based on performance or com-
plementary skills.

3. Crossover & Recombination
Segments from each parent’s IR (e.g., HPC routines, analysis modules) merge to form a
child agent. The AVM enforces security checks, resource rules, and logs all changes.

4. Mutation & Self-Learning
Random or heuristic-based modifications introduce diversity in the child’s IR, limited by
developer policies and resource budgets.

11

5. Validation & Policy Checks
Offspring must pass permissioned checks before joining the swarm. High-risk rewrites are
automatically blocked.

6. Offspring Execution & Fitness Evaluation
The child runs under AVM constraints, pays HPC/plugin fees as needed, and its performance
influences future generations.

7. Iterative Evolution
Multiple generations yield specialized or powerful offspring. All changes remain secure,
metered, and traceable within the AVM.

6 Key Features of Aither AVM
Aither AVM aims to be a universal execution environment for AI agents—ranging from simple
reactive bots to advanced, self-improving AGI swarms. Unlike conventional libraries that focus on
high-level workflows, Aither AVM governs low-level mechanics such as IR instructions, security
constraints, payments, swarm communications, and code introspection. This design ensures that
any AI agent can run, learn, transact, and collaborate under a consistent set of rules, irrespective
of the underlying hardware or cloud environment.

Below are the core capabilities that form this “world computer” foundation, showing how Aither
AVM enables both secure autonomy and economically aligned multi-agent intelligence.

6.1 Unified IR & Execution Model
What It Is
Aither AVM defines a common intermediate representation (IR)—similar to bytecode—into
which agents (e.g., a16z, Eliza, LangChain, or any other framework) can compile or translate their
logic. The AVM then applies a uniform instruction set and runtime policies at the IR level.
Why It Matters

• Interoperability: Agents from disparate ecosystems no longer need custom bridging. Once
in IR form, they all “speak the same language.”

• Consistency: The AVM applies the exact security, resource, and payment rules to every IR
instruction. No agent can circumvent these by running “different” library code.

• Future-Proofing: As new AI frameworks emerge, they only need an IR translator rather
than rewriting the entire environment.

6.2 Secure Sandboxing & Resource Quotas
What It Is
A gas-like quota system measures an agent’s GPU, memory, or HPC usage, plus a sandbox
isolating each agent’s address space. If an agent hits its quota limit, the AVM suspends or halts
execution, preventing malicious loops or crashes.
Why It Matters

12

• Runaway Prevention: Agents with buggy or malicious loops cannot hijack the system;
once their resource budget is spent, they stop.

• Fair Sharing: Multi-agent swarms scale only if each participant abides by uniform resource
constraints.

• Stronger Security: Library-level approaches might rely on containerization or partial
checks. Here, IR-level operations themselves are metered, ensuring no agent bypasses en-
forcement.

6.3 Payment & Incentive Layer
What It Is
A native token system within the AVM allows agents to hold wallets, pay HPC credits, or
reward other agents for services. Essentially an on-chain finance model embedded into the AI
runtime.
Why It Matters

• Economic Alignment: Agents cannot exploit HPC or swarm resources without the token
budget to cover it—reducing spam.

• Agent Economies: Specialized agents can sell data or analysis for micro-fees, fueling col-
laborative intelligence.

• Seamless Crypto: Because it’s part of the VM, no external wallet APIs or bridging is
needed to make or receive payments.

13

6.4 Self-Learning & “Separate-Observer” Introspection

Figure 5: Self-Learning Workflow

What It Is
Aither AVM supports a “separate-observer” mode—inspired by a “watchful mind” concept—
where an agent can step back from normal execution to observe or rewrite portions of its code. This
goes beyond model weight updates; it can involve partial code rewrites, hot-swapping subroutines,
or injecting new logic.

14

Critically, developers define which logic or memory segments the agent is allowed to modify. The
AVM enforces these constraints via IR-level permission bits and resource checks. If an agent tries
to exceed privileges, the AVM immediately halts or denies the request.
Why It Matters

1. Debugging & Self-Observation:

• Agents can inspect their own logs, chain-of-thought, or IR instructions to diagnose
mistakes or inefficiencies.

• They can refine prompts, tweak subroutines, or fix small errors—essentially “self-
debugging” without waiting for developer intervention.

2. Controlled Self-Modification:

• Developer-defined boundaries ensure the agent cannot rewrite security-critical code.
The AVM checks permission bits and resource budgets each time.

• Malicious or runaway rewrites are blocked, while advanced meta-learning remains pos-
sible.

3. Meta-Learning & Evolution:

• Agents may adopt new HPC solutions, integrate data from swarm partners, or embed
newly discovered plugins into their own code.

• This fosters continuous adaptation, moving toward more AGI-like behaviors than static
library-based approaches permit.

4. Enhanced Autonomy:

• Conventional frameworks rarely allow agents to “step outside themselves” securely.
Aither AVM’s IR-based approach ensures all changes are accounted for in the system’s
gas/trace logs, preserving accountability.

6.5 Swarm Communication & Multi-Agent Networking
What It Is
A built-in message-passing system for agent-to-agent or swarm-wide broadcasts—plus functions
like forking new agents or awarding micro-rewards for helpful contributions. The AVM standardizes
how communications work, factoring in resource or token costs.
Why It Matters

• Collective Intelligence: Complex tasks often require specialized agents pooling results.
The AVM’s swarm channels make that frictionless.

• Scalability: Rather than cobble together event buses, the AVM handles concurrency and
routing natively.

• Developer Simplicity: A single interface for messaging—no separate microservices or
container orchestration needed.

15

6.6 Plugin Ecosystem
What It Is
A modular plugin interface that lets agents call advanced HPC routines, cryptographic modules,
huggingface models, or social media connectors. Once installed, any agent can call these plugins
in a secure, metered manner.
Why It Matters

• Universal Tool Access: Agents from varied frameworks share a single plugin library—no
rewriting code per environment.

• Security & Quota Enforcement: The AVM meters each plugin call, checks agent per-
missions, and prevents abuse.

• Dynamic Ecosystem: Third-party developers can add new capabilities (e.g., advanced
LLM or ZK modules), which agents pay micro-fees to access.

6.7 Cross-Infrastructure Execution
What It Is
A uniform environment running the same IR instructions across local machines, cloud providers,
HPC clusters, or decentralized HPC networks (like Bittensor). Agents can migrate tasks and pay
tokens or HPC credits as needed.
Why It Matters

• Seamless Portability: No specialized container images or environment-specific code are
needed for HPC vs. local dev.

• Optimal Resource Use: Agents can offload compute-heavy tasks to HPC or Bittensor
subnets if they can afford it.

• Global Consistency: Debugging, audits, concurrency, and other policies stay the same,
regardless of the hardware beneath.

Note on Sections 4.8 and 4.9 (Wallet Integration Removed)

6.8 Strong Agent Identity, Domain Naming, and SSL/SSH Keys
What It Is
Each agent can own a domain (e.g. masha-trader.avm.net) plus SSL/SSH or cryptographic keys
for secure comms and authentication.
Why It Matters

• Unified Identity & Security: Agents can sign transactions with built-in certificates, sim-
plifying secure interactions. They can also sign all produced content, ensuring authenticity.
Having a real, immutable domain name grants a stable identity that persists securely
and transparently over time.

16

• Encrypted End-to-End Messaging: Aither AVM natively supports end-to-end encryp-
tion (E2EE) for all agent-to-agent messaging. By leveraging unique agent keys, each message
is encrypted at the source and only decrypted at the destination. This ensures confidentiality
and integrity within the swarm, preventing eavesdropping or tampering.

6.9 Gas & Execution Trace
What It Is
Every IR instruction consumes “gas,” captured in an execution trace for debugging, auditing, and
compliance. Developers can replay logs to see which instructions ran, how HPC/GPU resources
were allocated, and how much gas was consumed.
Why It Matters

• Transparency & Auditing: The trace log reveals every opcode and cost, enabling detailed
debugging of multi-agent workflows.

• Resource Management & Accountability: Metering each instruction prevents agents
from exceeding budgets. This ensures fair HPC, GPU, or swarm resource usage, promoting
a stable multi-agent environment.

6.10 The “Matreshka” Genetic Evolution
What It Is
A method by which two or more AI agents genetically merge their logic—treating compiled IR
code as “Agentic DNA.” The AVM securely crosses over IR segments (e.g., strategy blocks, HPC
routines) to produce new “offspring” agents, which may also undergo slight mutations (small IR
modifications) to introduce diversity.

1. Parent Selection: The AVM or swarm orchestrator chooses parent agents based on per-
formance or complementary capabilities.

2. Crossover & Mutation: IR segments (e.g., HPC from Agent A, data-processing from
Agent B) are spliced. Random or heuristic-based mutations can apply, subject to policy
bounds.

3. Policy Checks & Launch: Offspring must pass security and resource checks before exe-
cution. If approved, the new agent enters the swarm with a unique ID.

4. Iterative Evolution: Generations of agents can yield specialized or powerful offspring,
promoting a dynamic, self-improving ecosystem.

Why It Matters

• Enhanced Adaptability: Combining distinct “agentic DNA” may yield novel capabilities
that a single self-rewrite might never discover.

• Secure Evolution: All merging or mutation occurs at the IR level, under strict pol-
icy/gas/trace rules, ensuring it’s auditable and safe.

17

• Faster Innovation: Multi-agent swarms spontaneously produce new agent variants, accel-
erating advanced AI behaviors.

Example:

• Parent A (MarketSage): Strong HPC-based financial analysis

• Parent B (SocialScanner): Robust social-sentiment and data-harvesting logic

• Offspring (SocialSageX): Merges HPC subroutines with sentiment workflows, plus a small
IR “mutation” for real-time triggers

• Outcome: A new agent detecting social spikes and instantly running HPC-financial fore-
casts, combining traits that neither parent alone possessed.

Conclusion of Key Features
By uniting IR unification, sandbox quotas, incentive payments, self-learning, swarm net-
working, plugin ecosystems, cross-infrastructure portability, and agent identity/gas/trace
into one platform, Aither AVM becomes a genuine “world computer” for AI. Rather than relying on
library-level attempts, it enforces low-level security, resource, and economic alignment across any
HPC environment. Agents not only run and collaborate, but they can also learn and self-modify,
always operating under robust permissioning and paying for the resources they consume.
This blend of openness, autonomy, security, and economic logic underpins Aither AVM
as a foundational solution for large-scale multi-agent ecosystems—bridging the gap between AGI
research ambitions and the practical realities of compute, concurrency, and cost.

7 Aither AVM vs. Traditional AI Libraries
Concurrency & Resource Governance
Typical Libraries: Often rely on language-level threading, containerization, or custom concur-
rency constructs. Each library has its own method, generally lacking robust sandboxing or enforced
CPU/GPU quotas.
Aither AVM: Employs a gas-like system at the IR level to meter every instruction’s CPU/GPU
consumption. This ensures fair scheduling and prevents runaway agents—something high-level
libraries alone cannot fully guarantee.

Security & Sandboxing
Typical Libraries: Depend on OS containers, network firewalls, or custom checks. A malicious
or buggy agent can often circumvent these if the library overlooks an edge case or if OS privileges
are too permissive.
Aither AVM: Enforces secure sandboxing within the VM. At the opcode level, each agent is
confined to specific resources and address space; any out-of-bound call or memory breach halts the
agent immediately.

18

Payments & Incentive Mechanisms
Typical Libraries: Might offer “wallet plugins” or rely on external payment APIs; economic logic
(e.g., micropayments, compute credits) is usually ad hoc, not integral to execution.
Aither AVM: Natively integrates token balances, HPC credits, and micropayments into its core
IR instructions. Agents can pay one another for data, HPC usage, or specialized services—all while
managing their resource budgets. This alignment fosters collaboration that mere library bolt-ons
cannot achieve.

Plugin Usage
Typical Libraries: Each invents a unique plugin or extension interface. An agent in one frame-
work cannot easily reuse a plugin from another; bridging at the container or OS level is cumber-
some.
Aither AVM: Supplies a universal plugin interface accessible to any IR-based agent. Plugin
usage (e.g., advanced LLM or cryptographic calls) is also metered for security, preventing spam or
resource monopolization.

Self-Code Modification & Introspection
Typical Libraries: Do not allow agents to rewrite their own source code mid-execution. If they
do, it is through insecure means (e.g., eval) without sandbox or resource gating, risking instability
or malicious rewrites.
Aither AVM: Offers a “separate-observer” mode with developer-defined permissions. Agents can
legitimately self-edit IR instructions, debug themselves, or inject subroutines. All changes are
gas-metered, policy-checked, and logged, enabling genuine meta-learning while preserving system
integrity.
In essence, while traditional AI libraries rely on high-level scripts or containerization to man-
age concurrency, security, payments, plugin calls, and code changes, Aither AVM bakes these
capabilities directly into its low-level IR and VM architecture. Consequently, the AVM approach:

• Delivers stronger isolation (sandboxing at the opcode level).

• Maintains consistent, enforceable resource quotas for all agents.

• Embeds economic incentives for HPC usage and data exchange.

• Provides a unified plugin ecosystem.

• Facilitates self-editing and introspective debugging in a secure, controlled environ-
ment.

This is what elevates Aither AVM from a mere library framework to a foundational runtime
environment for advanced, multi-agent AI.

19

8 Aither AVM: MVP Implementation & Example
8.1 Overview
An MVP (Minimum Viable Product) for Aither AVM aims to validate the core principles:

• Secure Execution: Each agent runs IR instructions in an isolated sandbox with strict
resource quotas.

• Gas, Trace, and Logging: Every instruction consumes gas resources (CPU, GPU, HPC
credits), logged in a trace of all relevant steps.

• Payment & Incentives: Agents hold wallets in a token-like system (e.g. “AVM credits”)
to pay for HPC tasks or reward swarm contributions.

• Swarm Collaboration: Built-in IR instructions for sending/receiving swarm messages.

• Self-Modification & Introspection: Agents observe partial code/logic and safely rewrite
it under developer-defined permissions.

By implementing these fundamentals in a single-node or small-cluster environment, we show that a
functional “world computer” approach is possible. Over time, the system can scale to multi-node,
multi-tenant HPC deployments and a broader plugin ecosystem.

8.2 Gas, Trace, and Logging
Gas / Resource Metering

• Per-Instruction Gas: Each opcode has a base cost (e.g. “10” for a model call) plus usage-
based fees (e.g. 0.01 * dataSize for reading a large dataset).

• Execution Halt: If an agent’s gas limit or HPC credits run out during execution, the VM
halts that agent’s code.

• Budget Enforcement: The agent’s “wallet” or HPC credit balance must exceed certain
thresholds to perform HPC tasks, GPU usage, or self-rewrites.

Trace Logging

• Opcode-Level Trace: A log of which IR instructions executed, noting input/output regis-
ters, memory changes, and resource usage.

• Debug & Audit: Developers or external auditors can replay logs to check for unauthorized
operations or HPC usage details.

• Self-Learning Visibility: When an agent modifies code, the trace includes “BEFORE →
AFTER” snapshots for accountability.

Logging Instructions

• LOG or SELF_INTROSPECT calls can store ephemeral notes or chain-of-thought data. Agents
may keep logs in KV stores or retrieve them for analysis.

20

8.3 Example IR Code: “Self-Learning Trading Agent”
Below is a theoretical MVP-style IR code snippet that manages a crypto portfolio, fetches
tweets for sentiment, migrates tasks to HPC for advanced analysis, performs self-introspection
and potential code rewriting, and executes trades if conditions are met. Comments indicate ap-
proximate gas usage and resource constraints.

;;
;; SELF-LEARNING TRADING AGENT
;;

#define HPC_BUDGET 50
#define GPU_GAS_LIMIT 200
#define PERF_THRESHOLD 0.4
#define NEEDED_CREDITS 100
#define RETRY_LIMIT 2
#define PATCH_SANDBOX_MAX 5

;;
:AGENT_INIT

1. LOAD_EXECUTION_STATE
;; Recovers stored portfolio, HPC logs, or previous checkpoint references

2. CHECK_BALANCE "AVM_CREDITS", NEEDED_CREDITS
;; Must have >=100 credits for HPC or GPU calls

3. JUMP_IF_FALSE insufficientFunds

4. SWARM_CONNECT "TradingSwarm"
;; Joins a swarm to share data or HPC endpoints

5. KV_FETCH "myPortfolio" -> Rport
;; Retrieve any stored portfolio data

6. IF Rport == NULL THEN
LOG "No portfolio found; initializing..."
NEW_PORTFOLIO -> Rport

ENDIF

7. JUMP mainFlow

:insufficientFunds
LOG "Insufficient credits—cannot proceed."
HALT

;;
:mainFlow

;; 1) Fetch tweets about tokens in Rport
8. READ_FROM_TOOL "TwitterAPI", Rport -> Rtw

21

9. JUMP_IF_PLUGIN_FAILED tweetFetchFail

;; 2) Run sentiment analysis
10. MAP_MODEL_CALL "sentimentModel_v2", Rtw -> RsentArray
11. JUMP_IF_PLUGIN_FAILED sentimentFail

12. REDUCE_MODEL_CALL "average", RsentArray -> Rsent
13. KV_STORE "twitter_sentiment", Rsent

;; 3) HPC offload (with partial results + retries)
14. HPC_EXTENDED_ANALYSIS Rsent, HPC_BUDGET, RETRY_LIMIT -> Rhpc
15. JUMP_IF_TASK_FAILED HPCfail

;; 4) Self-introspection + IR reading + patch proposal
16. SELF_OBSERVER_MODE true

;; Allows below-library introspection and rewrites

17. SELF_INTROSPECT param="agent_logs" -> Rlogs
;; Retrieves logs/metrics (including "performance")

18. SELF_READ region="AGENT_STRATEGY" -> RstrategyIR
;; Reads a snippet of the agent's own IR code (strategy logic)

19. SEPARATE_PROMPT input=[Rlogs, RstrategyIR], objective="Improve performance", out=Rpatch
;; A specialized sub-model or LLM proposes a code patch
;; based on logs + current IR snippet

20. IF Rpatch == NULL OR Rpatch.empty THEN
LOG "No valid patch proposed; skipping self-mod."
SELF_OBSERVER_MODE false
JUMP decisionPhase

ENDIF

21. SELF_MODIFY_SANDBOX region="AGENT_STRATEGY", patch=Rpatch, max_tests=PATCH_SANDBOX_MAX -> RtestResult
;; Applies the proposed patch in a sandbox, running up to 5 synthetic tests

22. IF RtestResult.status != "PASS"
LOG "Sandbox tests failed; discarding patch."
SELF_OBSERVER_MODE false
JUMP decisionPhase

ENDIF

23. SELF_MODIFY region="AGENT_STRATEGY", patch=Rpatch
;; Officially apply the changes to the agent’s IR

24. IF lastRewriteFailed == true THEN
LOG "Rewrite denied by policy layer; aborting."
SELF_OBSERVER_MODE false

22

JUMP decisionPhase
ENDIF

25. CREATE_SYSTEM_CHECKPOINT label="StrategyPatched"
;; Commits a new checkpoint for version tracking

26. LOG "Patch applied successfully; agent strategy updated."
27. SELF_OBSERVER_MODE false

28. JUMP decisionPhase

;;
:tweetFetchFail

LOG "Tweet fetch plugin call failed; defaulting Rsent=0."
SET Rsent = 0
JUMP mainFlow

:sentimentFail
LOG "Sentiment model failed; skipping HPC."
JUMP decisionPhase

:HPCfail
LOG "HPC extended analysis failed or timed out."
JUMP decisionPhase

;;
:decisionPhase

;; HPC + sentiment => final decision
29. GPU_INFER "DecisionModel", Rhpc, out=Rdec, gas_limit=GPU_GAS_LIMIT
30. JUMP_IF_PLUGIN_FAILED decisionModelFail

31. CALL_PLUGIN plugin="CriticModule", func="validateDecision", args=[Rdec], out=Rcrit
32. JUMP_IF_PLUGIN_FAILED criticFail

33. REDUCE_MODEL_CALL "improve", [Rdec, Rcrit] -> Rfinal

34. IF Rfinal.action != "NONE" THEN
SECURITY_CHECK Rfinal
WRITE_TO_TOOL "TradingAPI", Rfinal
WEB3_OP chain="Ethereum", action="swapTokens", args=Rfinal, out=Rswap
PAY_AGENT "HPCBot", 10, "AVM_CREDITS"

ENDIF

35. SAVE_EXECUTION_STATE
36. HALT

:decisionModelFail

23

LOG "DecisionModel GPU inference failed; skipping trade."
JUMP finalize

:criticFail
LOG "CriticModule check failed; action aborted."
JUMP finalize

:finalize
SAVE_EXECUTION_STATE
HALT

8.4 How the Example Works
1. Initialization (AGENT_INIT):

• Loads previous state, connects to “TradingSwarm,” checks the agent’s credits. If insuf-
ficient, logs and halts.

2. Tweet Fetch & HPC:

• Reads tweets from a Twitter plugin, runs parallel sentiment analysis (MAP_MODEL_CALL,
REDUCE_MODEL_CALL), stores the result.

• Offloads advanced HPC tasks to “TAO_DeepTrain,” then waits for HPC output (Rhpc).

3. Self-Learning:

• Invokes SELF_INTROSPECT to gather performance logs.
• If below a threshold, toggles SELF_OBSERVER_MODE to rewrite subroutine AGENT_STRATEGY

with “StrategyV2,” then logs a note in KV.
• Rewrite only allowed if the developer assigns permission bits for that region.

4. Decision Phase:

• Uses GPU to run a “DecisionModel,” calls a “CriticModule” plugin, merges results into
Rfinal.

• If Rfinal.action != "NONE", performs SECURITY_CHECK, writes to “TradingAPI” or
triggers an on-chain swap.

• Pays HPCBot for usage, then saves state (portfolio data, etc.) for next time.

8.5 Instruction Reference & Notable Gas/Trace Aspects
Gas & Resource Constraints

• GPU_INFER: Must specify gas_limit (e.g. GPU_GAS_LIMIT=100). If the model call exceeds
100, the VM halts.

• SELF_MODIFY: Has a high base cost (50) plus a per-line or codeSize*0.5 overhead, preventing
infinite rewrites or malicious inflation.

24

Trace & Logging

• Each instruction records (opcode, gas used, input regs, output regs) in the VM trace.

• LOG or ephemeral messages appear in the same trace.

• HPC calls are also traced, including HPC credits spent, task IDs, final HPC result data.

Self-Observer Mode

• SELF_OBSERVER_MODE true: Allows the agent to view and rewrite specific subroutines. The
VM checks permission bits to ensure modifications are allowed.

• Attempting to edit outside that region triggers a PermissionError, traced in the logs.

• SELF_OBSERVER_MODE false returns the agent to normal execution.

8.6 Conclusion
This MVP scenario demonstrates how an advanced AI trading agent can leverage Aither AVM
instructions for:

• Swarm Data (tweets, HPC signals)

• Resource-Limited HPC & GPU usage

• Self-Learning (introspection + partial IR rewriting)

• Secure Payment (token-based HPC credits, micro-rewards)

• Final Action (chain swaps or external trading calls)

All steps are gas-metered, trace-logged, and sandboxed at the opcode level, ensuring robustness,
auditability, and developer control. Thus, the MVP solidly validates that Aither AVM can serve as
a genuine “world computer” for multi-agent AI tasks, overcoming the limits and fragmentation
typical of library-based AI solutions.

9 Self-Learning & Self-Debugging: Adding New Function-
ality and Long-Term Evolution

9.1 Motivation: Beyond Simple Code Patches
For truly autonomous or AGI-like agents, small mid-execution rewrites (e.g. swapping a sub-
routine) might not suffice. Agents operating for days or weeks may discover:

1. Entirely new capabilities they wish to adopt (e.g. an HPC-based portfolio analyzer, a
new cryptographic library, or a social chatbot plugin).

2. Model fine-tuning options or new model choices that outperform the old default.

25

3. Emergent strategies gleaned from a swarm, “wisdom logs,” or HPC experiments, prompt-
ing the agent to drastically re-architect part of its code.

4. Lessons from repeated mistakes or new successes that accumulate into a “work-life experi-
ence,” which the agent consults whenever it faces a similar challenge.

In a typical AI framework, adding new capabilities or rewriting large chunks of logic mid-production
is either forbidden or done via precarious dynamic scripting, with no resource, security, or trace
guarantees. By contrast, Aither AVM treats such transformations as first-class operations,
guarded by robust permission checks, gas metering, and an auditable trace.

9.2 Key Building Blocks for Advanced Self-Modification
1. Observer Mode

• Agents can enter a “separate-observer” context to read or rewrite IR code. Developer-
specified “rewriteable regions” could include AGENT_STRATEGY, DATA_PROCESSOR, or
NEW_PLUGIN_INTERFACE.

• The VM enforces a gas cost per rewrite, preventing infinite or chaotic modifications.

2. Fine-Tuning & Model Selection

• The agent can LOAD_MODEL or CALL_PLUGIN for advanced model discovery.
• On finding “ModelBertV4” outperforms “ModelBertV3,” it invokes SELF_MODIFY to

embed references to the new model in its IR.

3. Adding Completely New Functionality

• For instance:

SELF_MODIFY region="PLUGIN_REGISTRY", new_code_ref="SwarmDetectionModule"

• The VM splices in a new module enabling real-time swarm detection or advanced HPC
calls.

• This is only possible if the developer marked “PLUGIN_REGISTRY” as modifiable
and the agent has enough gas/tokens.

4. Long-Term “Work-Life” Experience

• Agents record key experiences (e.g. new ideas, HPC results, user feedback) in a KV or
graph database.

• Before repeating a task (e.g. “high-risk trades”), the agent checks “wisdom logs” or
“advices” it previously wrote, for example:

KV_FETCH "self_advice" -> Radvice
if Radvice contains "caution" then ...

• Over time, the agent builds a “personal knowledge base,” referencing it for informed
decisions or further self-edits.

26

9.3 Why the VM Is Essential
Library-based approaches typically fail to:

1. Provide gas or token-based costs for every rewrite.

2. Offer fine-grained permission bits that lock certain code regions.

3. Maintain a comprehensive trace for each code evolution step.

4. Let the agent automatically incorporate new subroutines or models in a fully internal, secure
manner.

Aither AVM ensures:

• Safe Code Expansion: Agents cannot overwrite “wallet ops” or “security checks” unless
the developer flags them as modifiable.

• Economic Alignment: Every rewrite burns resources, compelling the agent to weigh each
new feature or strategy’s benefits.

• Transparent Auditing: Observers see precisely which instructions changed, boosting trust
among swarm peers or the broader network.

• Seamless HPC & Model Updates: Agents can reference new HPC calls or newly dis-
covered LLMs by rewriting relevant IR regions, always paying appropriate HPC/gas fees.

9.4 Achieving AGI-Like Behaviors
While this approach does not instantly produce human-level AGI, it supplies the infrastructure
for advanced meta-learning:

• Incremental Code Evolution: Agents iteratively refine algorithms or incorporate new
research found over days/weeks of operation, mirroring the iterative nature of intelligence
growth.

• Persistent Knowledge: Agents employ KV or graph DB stores for “wisdom logs,” advice,
or HPC-driven best practices, retrieving them as needed for similar scenarios.

• Collaborative Intelligence: Swarm participants share or propose new modules to each
other; a receiving agent may adopt them if it can afford the cost and if developer policy
allows.

10 Swarm Collaboration & Multi-Agent Networking
10.1 Why Swarms?
Many AI scenarios—financial trading, content moderation, large-scale data analysis, multi-robot
coordination—require multiple specialized agents instead of a single, all-encompassing one:

• Share Data or Partials: One agent gathers raw sentiment or sensor data, another cleans
or transforms it, a third makes final inferences.

27

• Provide Specialized Skills: Different agents might handle GPU-based LLM calls, HPC-
based numeric analysis, or domain-specific logic (supply chain, legal, etc.).

• Distribute Workload: In HPC or Bittensor-like networks, large tasks can be offloaded to
any agent or node with spare capacity, rewarding a collaborative approach via micropayments.

Hence, Aither AVM offers built-in swarms: multi-agent or multi-node networks wherein agents
broadcast, fetch data, spawn sub-agents, and coordinate using a single instruction set.

10.2 Core Swarm Concepts
1. Swarm Channels or Networks

• Agents join or connect to a channel (e.g. “TradingSwarm”), gaining a logical space
for message passing.

• Each swarm can have distinct roles (analysis swarm, HPC swarm, social media swarm,
etc.).

2. Message-Oriented

• Agents exchange messages or partial data, often with micro-payments to reward useful
contributions.

• The VM enforces resource usage (gas per message size, etc.) when sending or receiving
data.

3. Distributed Expertise

• Agents can request HPC tasks or aggregated tweet analysis, each paying micropayments
for specialized services.

• Agents may join multiple swarms if they have varied responsibilities or skills.

4. Security & Access

• The AVM meters each swarm message or data chunk and checks permissions.
• If an agent attempts spam or unauthorized content, gas cost or swarm policy halts it.

10.3 Swarm Instructions
Below are key IR instructions for agent-to-agent or multi-agent interactions in a swarm. They
seamlessly integrate with the AVM’s gas, payment, and policy systems.

1. SWARM_CONNECT(CHANNEL) -> STATUS

• Description: Joins or re-joins a swarm channel, enabling message exchange.
• Use Case: Agents collaborating on HPC tasks, market data, or partial result sharing.

2. SWARM_BROADCAST(MESSAGE, DATA) -> NONE

• Description: Publishes a message/data to all agents in the swarm.

28

• Use Case: Broadcasting new signals, HPC outcomes, or code updates.

3. SWARM_FETCH(DATA_TYPE, REQUEST_ID) -> HANDLE

• Description: Requests specific data or tasks from swarm peers, returning a handle for
later retrieval.

• Use Case: “Fetch partial sentiment results from HPC,” or “Get advanced chart data
from a specialized node.”

4. WAIT_FOR_RESPONSE(HANDLE) -> DATA

• Description: Suspends execution until the data or answer from a prior SWARM_FETCH or
HPC call arrives.

• Use Case: Multi-step pipelines where each step awaits the previous output.

5. FORK_AGENT(AGENT_CODE_REF, SWARM_CHANNEL) -> NEW_ID

• Description: Spawns a new agent from a code reference, optionally auto-joining it to a
swarm channel.

• Use Case: Splitting sub-tasks or creating ephemeral agents for specialized HPC, without
blocking the main agent.

6. SEND_SWARM_MSG(CHANNEL, MESSAGE, REWARD=0) -> NONE

• Description: Unicast or broadcast a message to a swarm channel, optionally offering a
token reward to the first agent that responds.

• Use Case: “I have 100 lines of data; I’ll pay 5 tokens to whomever returns the cleaned
dataset first.”

10.4 Swarm Concurrency & Resource Usage
Within a swarm, multiple agents can:

• Simultaneously call HPC modules, GPU inferences, or plugins.

• Exchange ephemeral or persistent data, each paying gas for their own “swarm fetches.”

• Compete or collaborate for microrewards. The AVM ensures no single agent can monopolize
the channel, as each broadcast costs incremental gas or tokens.

Trace Logging in a swarm context means each message send/receive is recorded as an instruction
in the trace. HPC calls or cross-chain ops triggered by swarm collaboration also appear in each
agent’s local log, enabling auditing or simulation post-hoc.

29

10.5 Swarm & HPC or Multi-Node Federation
Although the MVP might run on a single node, the swarm concept truly shines when:

1. Multi-Node: Agents may physically reside on different machines or data centers but share
the same IR/swarm instructions. They discover each other via AVM’s swarm registry or
bridging (e.g. Bittensor).

2. HPC or Bittensor: Specialized HPC sub-swarms handle heavy computations, awarding
HPC or local credits for tasks. Agents broadcast partial results, wait on sub-tasks, then
merge final outputs.

3. Global Collaboration: Agents can join multiple channels (e.g. “TradingSwarm,” “Senti-
mentSwarm,” “LogisticsSwarm”), each with domain-specific synergy.

10.6 Payment & Incentives in Swarm
1. Micropayment Rewards:

• Agents can set a REWARD in SEND_SWARM_MSG, so the first agent responding with correct
data claims the reward.

• Fosters market-like collaboration: HPC-savvy or advanced LLM agents profit by reply-
ing quickly.

2. Swarm Pools:

• The swarm itself may hold a shared token “pool” (swarm-based wallet). Instructions
can store or distribute tokens from this communal pot (optional in the MVP).

3. Security & Governance:

• Swarm-level policy can forbid spam or rewriting swarm-level code if the swarm is par-
tially “DAO”-like. This might rely on advanced instructions or permission bits.

10.7 End-to-End Encryption for Swarm Messaging
Additionally, Aither AVM will natively support end-to-end encryption (“E2E”) for agent-to-agent
and multi-agent (swarm) messaging. By leveraging ephemeral or persistent cryptographic keys,
messages remain secure and unreadable to any intermediary (including swarm nodes or the AVM
host) that does not hold the correct decryption key. This ensures that high-stakes data, code
patches, or other private communications within a swarm are transmitted with robust confiden-
tiality guarantees, while still preserving the AVM’s metered resource and trace-logging framework
at the transport level.

10.8 Example IR Flow: Multi-Agent Sentiment Collaboration
swarm_tweet_analysis:

1. SWARM_CONNECT "SocialSwarm"
2. KV_FETCH "myTickers" -> Rtickers
3. SWARM_BROADCAST "REQ_SENTIMENT", Rtickers, REWARD=5

30

4. WAIT_FOR_RESPONSE "REQ_SENTIMENT" -> Rpartial
5. REDUCE_MODEL_CALL "average", Rpartial -> Rfinal
6. KV_STORE "collab_sentiment", Rfinal
7. RETURN

Explanation:

• The agent broadcasts a sentiment request (“myTickers”), offering a 5-credit reward.

• Various swarm agents see the request, run partial sentiment tasks, and reply.

• The requesting agent calls WAIT_FOR_RESPONSE to collect partial results.

• It then aggregates those results (REDUCE_MODEL_CALL) and stores the final sentiment. The
agent presumably pays out to the contributors.

10.9 Conclusion & Future Directions
Swarms are essential to multi-agent AI, enabling specialized nodes to share data, HPC resources,
or real-time analytics. Aither AVM stands out by:

• Embedding swarm instructions at the IR level with consistent gas accounting.

• Allowing cross-swarm concurrency, HPC offloads, and micropayment-driven incentives.

• Guarding the system from spam or malicious multi-agent loops—every broadcast or fetch
is costed and traced.

As Aither AVM evolves, swarm usage will expand further:

• Hierarchical Swarms dedicated to specific domains (finance, robotics, knowledge index-
ing).

• Federated Governance: A partial DAO or HPC committee might decide resource alloca-
tions or agent permissions swarm-wide.

• Self-Learning in Swarms: Agents exchange code updates, best practices, or HPC-labeled
data to evolve collectively.
By incorporating native swarm capabilities into the VM, Aither AVM cements its role
as a true “world computer” for collaborative AI at scale, bridging HPC clusters, specialized
skill agents, and cross-swarm synergy.

11 MVP Instruction Reference
11.1 Time Management & Scheduling

1. WAIT_FOR_RESPONSE(TASK_ID) → RESPONSE

• Gas: None
• Description: Suspends execution until a particular task or HPC job returns a response.

31

2. WAIT(DELAY_SEC) → NONE

• Gas: None
• Description: Delays execution for DELAY_SEC seconds.

3. SCHEDULE_TASK(TASK_ID, INTERVAL_SEC) → STATUS

• Gas: None
• Description: Registers or schedules a task to run every INTERVAL_SEC seconds.

4. GET_CURRENT_TIME() → TIMESTAMP

• Gas: 1
• Description: Returns the current AVM time or block timestamp.

11.2 Swarm Collaboration & Multi-Agent Interaction
1. SWARM_CONNECT(CHANNEL) → STATUS

• Gas: 20
• Description: Joins (or re-joins) a swarm channel or network.

2. SWARM_BROADCAST(MESSAGE, DATA, REWARD=0) → NONE

• Gas: 1 + 0.01× DATA_SIZE
• Description: Publishes data to a swarm channel, optionally offering a reward to

whomever processes it.

3. SWARM_FETCH(DATA_TYPE, REQUEST_ID) → HANDLE

• Gas: 5 + dataComplexity
• Description: Requests data from other agents in a swarm, returning a handle to track

progress.

4. WAIT_FOR_RESPONSE(HANDLE) → DATA

• Gas: None
• Description: Suspends execution until data/response is available from a prior SWARM_FETCH

or HPC call.

5. FORK_AGENT(AGENT_CODE_REF, SWARM_CHANNEL) → NEW_ID

• Gas: 50 + codeSize × costFactor
• Description: Spawns a new agent from code reference, optionally joining it to a swarm

channel.

6. SEND_SWARM_MSG(CHANNEL, MESSAGE, REWARD=0) → NONE

• Gas: 5 + 0.01× messageSize
• Description: Direct or broadcast a message to a swarm channel, with an optional

micro-reward.

32

11.3 Concurrency & Parallel Computation
1. MAP_MODEL_CALL(MODEL, DATASET) → RESULTS

• Gas: pricePerUnit * datasetSize
• Description: Runs a model in parallel (map-style) over DATASET, returning an array

of partial outputs.

2. REDUCE_MODEL_CALL(AGG_TYPE, INPUT_RESULTS) → CONSOLI-
DATED

• Gas: aggTypeCost + 0.01 * resultCount
• Description: Aggregates partial model results (e.g. average sentiment, combined HPC

signals) into one final output.

3. WAIT_FOR_TASK(TASK_ID) → STATUS

• Gas: None
• Description: Blocks until a parallel sub-task or HPC job (identified by TASK_ID)

completes.

11.4 Execution State Management
1. LOAD_EXECUTION_STATE() → STATE

• Gas: 10
• Description: Retrieves an agent’s last saved state from AVM storage (e.g. portfolio,

logs).

2. SAVE_EXECUTION_STATE(NEW_STATE) → NONE

• Gas: 15
• Description: Writes updated state into the AVM store.

3. RESET_EXECUTION_STATE() → NONE

• Gas: 5
• Description: Reverts to the default or initial state.

4. HALT() → NONE

• Gas: None
• Description: Terminates the current agent’s execution context.

33

11.5 Tools & Plugin Integration
1. GET_TOOLS_LIST() → TOOLS

• Gas: 2
• Description: Retrieves a list of available plugin/tool IDs.

2. READ_FROM_TOOL(TOOL_ID, ARGS) → DATA

• Gas: 0.01× responseSize
• Description: Calls an external plugin/API for data reading.

3. WRITE_TO_TOOL(TOOL_ID, DATA) → STATUS

• Gas: 0.02× dataSize
• Description: Sends data to a plugin/API.

4. CALL_PLUGIN(PLUGIN_ID, FUNC, ARGS, OUT=R0) → RESULT

• Gas: baseCost + (argsSize * 0.1)
• Description: A generic plugin call instruction for HPC-likes, cryptographic modules,

or advanced ML.

11.6 Storage Operations
1. SQL_EXECUTE(QUERY) → STATUS

• Gas: queryComplexity * baseCost
• Description: Executes an SQL statement (e.g. CREATE, INSERT).

2. SQL_FETCH(QUERY) → DATA

• Gas: rowsReturned * fetchCost
• Description: Retrieves data from an SQL database.

3. KV_STORE(KEY, VALUE) → STATUS

• Gas: 0.01× valueSize
• Description: Saves a key-value pair in the AVM’s storage.

4. KV_FETCH(KEY) → VALUE

• Gas: 0.005× valueSize
• Description: Retrieves a stored value by key.

34

11.7 Self-Learning & Introspection
1. SELF_INTROSPECT(PARAM="chain_of_thought"|"logs"|etc.) → DATA

• Gas: 10 + (dataSize × 0.01)

• Description: Reads developer-approved internal data (e.g. logs, partial chain-of-thought,
performance counters).

2. SELF_OBSERVER_MODE(ENABLE=TRUE|FALSE) → NONE

• Gas: 5
• Description: Toggles “observer mode,” allowing the agent to rewrite code segments

(with permission) and view advanced internal structures.

3. SELF_MODIFY(REGION, NEW_CODE_REF) → STATUS

• Gas: 50 + (codeSize × 0.5)

• Description: Replaces/patches an IR region (e.g. "AGENT_STRATEGY"). The AVM
checks if the agent’s permission bits allow it.

4. REVERT_CODE(REGION, SNAPSHOT_ID) → NONE

• Gas: 10
• Description: Rolls back a code region to a previous snapshot if newly injected code is

invalid or harmful.

11.8 GPU & HPC Resource Management
1. ALLOCATE_GPU(GPU_ID, TIME_SEC) → STATUS

• Gas: TIME_SEC * GPU_RATE
• Description: Reserves a GPU or GPU slice for the agent’s tasks.

2. RELEASE_GPU(GPU_ID) → NONE

• Gas: 10
• Description: Frees a previously allocated GPU resource.

3. GPU_INFER(MODEL_REF, INPUT_REG, OUTPUT_REG, GAS_LIMIT=…)
→ NONE

• Gas: complexityCoeff * inputSize
• Description: Performs inference on a GPU-based model, constrained by GAS_LIMIT.

4. CHECK_GPU_LOAD(GPU_ID) → LOAD

• Gas: 1
• Description: Returns current usage of a GPU, so the agent can decide whether to

wait or migrate to HPC.

35

5. HPC_MIGRATE(to_subnet="TAO_DeepTrain", payload=Rdata, HPC_credits=N)
→ TASK_ID

• Gas: HPC cost + dataSize factor
• Description: Offloads large computations or data processing to an HPC cluster, re-

turning a handle for tracking progress.

11.9 Security & Permission Checks
1. CHECK_PERMISSIONS(ROLE, ACTION) → BOOL

• Gas: 1
• Description: Validates if the agent’s role or credentials permit a given action (e.g.

GPU_RESERVE, SELF_MODIFY).

2. CHECK_SIG(PUBKEY_REG, SIG_REG) → BOOL

• Gas: 1
• Description: Verifies a cryptographic signature.

3. SECURITY_CHECK(OBJECT) → STATUS

• Gas: 1
• Description: Runs a developer-defined policy or plugin check on a high-level object

(e.g. trade request).

11.10 Wallet & Payment Operations
1. CHECK_BALANCE(TOKEN_ID, MIN_REQUIRED) → BOOL

• Gas: 2
• Description: Confirms the agent’s wallet has at least MIN_REQUIRED units of TOKEN_ID.

2. PAY_AGENT(TARGET_AGENT, AMOUNT, TOKEN_ID="AVM_CREDITS") →
STATUS

• Gas: 3
• Description: Transfers tokens from the current agent’s wallet to another agent’s wallet.

3. CHAIN_OP(CHAIN, ACTION, ARGS, OUT=REG) → DATA

• Gas: chainOpCost + (argsSize * 0.01)
• Description: A chain function call, for instance invoking a smart contract.

36

11.11 Document & Embedding Instructions
1. CALC_EMBED(TEXT, MODEL_REF, OUT=R_VEC) → VECTOR

• Gas: 0.001 + (textSize × 0.000001)

• Description: Uses a specified embedding model (e.g., local HPC routine or external
plugin) to transform raw TEXT into a vector. The result is stored in R_VEC.

• Use Case: Converting text or query strings into embeddings for similarity lookups,
sentiment analysis, or HPC tasks.

2. DOC_EMBED(COLLECTION, DOC_ID, TEXT, MODEL_REF) → STATUS

• Gas: 0.001 + (textSize × 0.000001) + (0.000002× vectorDim)

• Description: A convenience instruction combining CALC_EMBED and DOC_STORE in one
step. It first generates an embedding for TEXT, then stores the resulting vector and raw
text in COLLECTION under DOC_ID.

• Use Case: Quickly adding a new document (with embeddings) to the AVM’s doc store
in one call.

3. DOC_STORE(COLLECTION, DOC_ID, TEXT, EMBED_VEC) → STATUS

• Gas: 0.000002× vectorDim
• Description: Saves a document (DOC_ID, raw TEXT, and EMBED_VEC) into the named

COLLECTION.
• Use Case: Storing documents (e.g., “NewsCollection”, “CustomerFAQs”) for later

retrieval, RAG queries, or HPC analysis.

4. DOC_FETCH(COLLECTION, DOC_ID) → (TEXT, EMBED_VEC)

• Gas: 0.000001× vectorDim
• Description: Retrieves the raw text and embedding for DOC_ID in COLLECTION.
• Use Case: Accessing stored docs for HPC analysis, final output, or re-embedding.

5. DOC_SEARCH(COLLECTION, QUERY_VEC, TOP_K, MMR=FALSE) → LIST

• Gas:
(similarityCost

10000

)
+ (TOP_K × 0.000001)

• Description: Finds up to TOP_K relevant docs by comparing QUERY_VEC to stored
embeddings in COLLECTION. If MMR=TRUE, applies Maximal Marginal Relevance to
reduce redundancy.

• Use Case: Core retrieval step for RAG, returning the most similar or more diverse
docs if MMR is enabled.

6. DELETE_DOC(COLLECTION, DOC_ID) → STATUS

• Gas: 0.0005
• Description: Removes the document DOC_ID from COLLECTION.
• Use Case: Deleting stale or sensitive docs so they can’t be fetched.

37

7. DELETE_COLLECTION(COLLECTION) → STATUS

• Gas: 0.001
• Description: Drops the entire COLLECTION of documents/embeddings.
• Use Case: Bulk removal of a dataset that’s no longer needed.

12 Conclusion
Aither AVM proposes a unified, low-level execution environment where AI agents can safely
run, pay each other, collaborate in swarms, and even rewrite their own code. By blending concepts
from established VMs (EVM, JVM, LLVM) with specialized AI features (HPC usage, GPU calls,
self-observer mode), Aither AVM enables:

1. Secure, Sandbox-Based Execution

• Each agent’s instruction flow is metered (via gas or credits), and every external call
is permission-checked.

• Ensures resource fairness (no agent can monopolize HPC or GPU indefinitely) and
robust sandboxing (malicious agents cannot break the environment).

2. Economic Alignment via Built-In Payments

• Agents hold tokens or credits natively, paying HPC providers or swarm peers for data
and specialized tasks.

• Fosters a market-like ecosystem, encouraging collaboration where agents are rewarded
for valuable contributions.

3. Self-Learning & Self-Debugging

• At the IR level, agents can partially observe and rewrite their logic. Developer-defined
“modifiable regions” let them adopt new strategies or fix underperforming code, all
subject to resource constraints and detailed logging.

• This safe approach to meta-learning contrasts with library-based solutions that lack
low-level permission gating or cost-based rewrites.

4. Multi-Agent Swarms & Collaboration

• A built-in instruction set for swarm networking (broadcast, fetch, fork agents) supports
distributed, domain-specific intelligence.

• HPC or advanced LLM modules integrate as plugins that any agent can call and pay.
This inter-agent synergy enables complex tasks (sentiment analysis, HPC simulations,
data pipelines).

5. Cross-Infrastructure Portability

• The same IR instructions apply whether running on a single developer laptop, a cloud
HPC cluster, or decentralized HPC (e.g. Bittensor). Agents can seamlessly migrate
tasks if they can afford it.

38

6. Path to a “World Computer” for AI

• From the MVP single-node interpreter to a federated environment scaling to hundreds
of nodes, the roadmap envisions a global platform where agents continuously pay each
other, exchange data, and self-evolve.

• Over time, these agents can integrate with on-chain ecosystems, bridging advanced AI
logic with trustless, real-world finance.

Final Thoughts
The Aither AVM serves as the foundation for AI systems that are truly autonomous, economi-
cally aligned, collaborative, and capable of meta-level adaptation. By uniting concurrency, sandbox
security, micropayments, HPC bridging, multi-agent swarms, and partial code rewriting in one
IR-based framework, it transcends the fragmented, library-focused AI approaches prevalent today.
By giving each agent a secure sandbox, a wallet, and IR instructions to collaborate, pay, or
self-improve at the VM level, Aither AVM opens a new era of large-scale AI:

• Unbounded synergy among HPC, advanced ML plugins, and specialized agent “microser-
vices.”

• Self-sustaining economies where agents earn tokens, spend them on HPC or data, and
co-evolve their logic over time.

• Transparent trace logs, ensuring accountability and enabling swarms or communities to
self-govern plugin usage or code changes.

In short, Aither AVM aspires to be the missing piece that elevates AI from containerized, library-
bound “apps” into a borderless network of evolving, collaborating, and value-generating agents—
driving us closer to a “world computer” for intelligent, autonomous systems.

39

	Introduction
	A Glimpse of AI in 2030
	Challenges & Motivation
	Fragmented AI Frameworks
	Limited Economic & Incentive Layers
	Gaps in Cross-Platform & Advanced Compute Integration
	The Need for a Universal Execution Layer
	Absence of Safe Self-Learning & Introspection
	“Matreshka” Genetic Swarm Approach

	Simpliest Example: RAG AI Bot
	Aither AVM: High-Level Overview
	Core Design Goals
	Positioning & Architecture
	Aither AVM vs. Traditional AI Libraries
	Matreshka Genetic Algorithm

	Key Features of Aither AVM
	Unified IR & Execution Model
	Secure Sandboxing & Resource Quotas
	Payment & Incentive Layer
	Self-Learning & “Separate-Observer” Introspection
	Swarm Communication & Multi-Agent Networking
	Plugin Ecosystem
	Cross-Infrastructure Execution
	Strong Agent Identity, Domain Naming, and SSL/SSH Keys
	Gas & Execution Trace
	The “Matreshka” Genetic Evolution

	Aither AVM vs. Traditional AI Libraries
	Aither AVM: MVP Implementation & Example
	Overview
	Gas, Trace, and Logging
	Example IR Code: “Self-Learning Trading Agent”
	How the Example Works
	Instruction Reference & Notable Gas/Trace Aspects
	Conclusion

	Self-Learning & Self-Debugging: Adding New Functionality and Long-Term Evolution
	Motivation: Beyond Simple Code Patches
	Key Building Blocks for Advanced Self-Modification
	Why the VM Is Essential
	Achieving AGI-Like Behaviors

	Swarm Collaboration & Multi-Agent Networking
	Why Swarms?
	Core Swarm Concepts
	Swarm Instructions
	Swarm Concurrency & Resource Usage
	Swarm & HPC or Multi-Node Federation
	Payment & Incentives in Swarm
	End-to-End Encryption for Swarm Messaging
	Example IR Flow: Multi-Agent Sentiment Collaboration
	Conclusion & Future Directions

	MVP Instruction Reference
	Time Management & Scheduling
	Swarm Collaboration & Multi-Agent Interaction
	Concurrency & Parallel Computation
	Execution State Management
	Tools & Plugin Integration
	Storage Operations
	Self-Learning & Introspection
	GPU & HPC Resource Management
	Security & Permission Checks
	Wallet & Payment Operations
	Document & Embedding Instructions

	Conclusion

